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SUMMARY

In the terrestrial carbon cycle is very relevant to 
identify the influence of soil in the CO2 released to 
the atmosphere, which is linked to multiple biotic and 
abiotic drivers. Arid ecosystems dominate the trend and 
interannual variability of the land CO2 sink. This pattern 
is mainly controlled by temperature, precipitation, and 
shortwave radiation. Thus, these environments are 
characterized by a wide variability of water availability, 
which causes the CO2 efflux to be highly variable in 
time, challenging our model capacities. This study 
aims to understand the ecosystem CO2 fluxes and their 
controlling mechanisms from the Chihuahuan Desert in 
Northeast Mexico. We explore the average contribution 
of the Rsoil (1.30 mmol m-2 s-1) to Reco (1.76 mmol m-2 s-1), 
while identifying the controlling mechanisms of both 
on an annual scale. The structural equation model 
constructed showed a good f it for the data, explaining 
50% and 93% of the annual variance of Rsoil and Reco, 
respectively. According to this model, Rsoil was mainly 
controlled by the air temperature, and Reco by soil water 
content. Unexpectedly, vapor pressure def icit was the 
most weight variable with a direct negative effect on 
Reco, supporting the idea that the vegetation component 
has a crucial role in the CO2 efflux of this ecosystem. 
This study highlights the importance of include multiple 
factors in the models of the C cycle.

Index words: air temperature, ecosystem respiration, 
soil respiration, soil water content, structural equation 
models.

RESUMEN

En el ciclo del carbono terrestre es muy 
relevante para identif icar la influencia del suelo en 
el CO2 liberado hacia la atmósfera, mismo que está 
vinculado a múltiples factores bióticos y abióticos. 
Los ecosistemas áridos dominan la tendencia y 
variabilidad interanual de los sumideros de CO2 
terrestre. Este patrón es principalmente controlado 
por la temperatura, precipitación y radiación de onda 
corta. De este modo, estos ambientes se caracterizan 
por una amplia variabilidad en la disponibilidad de 
agua, lo que hace que la emisión de CO2 sea altamente 
variable en el tiempo, desaf iando nuestra capacidad de 
modelación. El objetivo de este estudio es comprender 
los flujos ecosistémicos de CO2 y los mecanismos que 
los controlan en el desierto de Chihuahua en el noreste 
de México. Exploramos la contribución promedio 
de Rsoil (1.30 mmol m-2 s-1) a Reco(1.76 mmol m-2 s-1), 
identif icando los mecanismos de control de ambos 
en una escala anual. El modelo de ecuaciones 
estructurales construido mostró un buen ajuste de 
los datos, explicando 50 y 93% de la varianza anual 
de Rsoil y Reco, respectivamente. Según este modelo, 
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Rsoil fue controlado principalmente por la temperatura 
del aire y, Reco por el contenido de agua en el suelo. 
Inesperadamente, el déf icit de la presión de vapor fue 
la variable con el efecto negativo de mayor peso sobre 
Reco, sustentando la idea de que el componente vegetal 
tiene un rol crucial en el flujo de CO2 en este ecosistema. 
Este estudio destaca la importancia de incluir múltiples 
factores en los modelos del ciclo del carbono.

Palabras clave: contenido de agua del suelo, modelos de 
ecuaciones estructurales, respiración del ecosistema, 
respiración del suelo, temperatura del aire.

INTRODUCTION

The Net Ecosystem Exchange (NEE) is def ined 
as the difference between the gross ecosystem 
productivity (GEP, photosynthetic assimilation of 
carbon dioxide -CO2-) and the ecosystem respiration 
(Reco). Reco is the sum of different biological and non-
biological CO2 sources, grouped into above-ground 
respiration and below-ground respiration (Luo and 
Zhou, 2006). Above-ground respiration includes that 
from leaves and woody tissues, whereas below-ground 
respiration refers that produced by the soil respiration 
(Rsoil), subterranean ventilation, carbonate weathering, 
or photo-degradation (Bond-Lamberty, Wang, and 
Gower, 2004; Brüggemann et al., 2011; Rey, 2015). 
Thus, Rsoil is def ined as the efflux rate measured at 
the soil surface as a result of the autotrophic (roots, 
mycorrhizae, endophytes, etc.) and heterotrophic (soil 
fauna) respiration (Phillips and Nickerson, 2015).

Soil carbon (C) reserves on the f irst meters of the 
earth’s surface contain between 1500 and 2400 PgC, 
representing twice to three times the amount of 
atmospheric C (~829 PgC). This is mirrored in the soil 
CO2 emissions (118.7 Pg per year) from the soil to the 
atmosphere, turning the Rsoil into the largest terrestrial 
source of CO2 (Ciais et al., 2013; Bispo et al., 2017). 
Furthermore, global changes in temperature, moisture 
(Bond-Lamberty and Thomson, 2010; Hursh et al., 
2017), vegetation composition (Vargas, Detto, 
Baldocchi, and Allen, 2010; Roby, Scott, Barron, 
Hamerlynck, and Moore, 2019), and land-use (Post 
and Kwon, 2000) alters the Rsoil, and subsequently the 
Reco. Therefore, atmospheric CO2 concentrations have 
increased in the last decades, raising concerns about 
global warming and further releasing CO2, particularly 
from soils (Rustad, Huntington, and Boone, 2000).

Despite the importance of studying the Reco and 
Rsoil dynamics, their knowledge is biased to temperate 
ecosystems, at latitudes above 30º, being the tropical 
and arid ones least investigated (Baldocchi et al., 2001; 
Bond-Lamberty and Thomson, 2018). Among the latter, 
arid ecosystems cover roughly 47.2% of the earth’s 
surface, having a key role in terrestrial C cycling since 
those dominate the trend and interannual variability 
of the land CO2 uptake, acting as a C sink (Poulter 
et al., 2014; Ahlström et al., 2015). This behavior is 
at the same time controlled to a greater extent by the 
temperature, precipitation, and shortwave radiation 
(Ahlström et al., 2015). Similarly, 65% of the Mexican 
territory corresponds to arid lands (CONAFOR-UACh, 
2013), which posses wide variability in the seasonal 
and inter-annual rainfall, precipitation pulses (Pontifes, 
García, Gómez, Monterroso, and Caso, 2018), and high 
plant diversity (~6000 species and 50% of endemicity) 
(Rzedowski, 2006). The aforementioned makes Rsoil and 
Reco highly variable over time and space, and strongly 
associated with the biological activity and vegetation 
variation (de Graaff, Throop, Verburg, Arnone III, and 
Campos, 2014; Montaño et al., 2016). 

Studies that analyze the C flux in arid Mexican 
lands have focused on the NEE controllers, with the 
information about the Reco and Rsoil being scant (Cueva-
Rodríguez, Robles, Garatuza, and Yépez, 2016; 
Montaño et al., 2016). Regarding Reco, it has been 
shown precipitation legacies control the C uptake and 
Reco of the next seasons, with GEP being more sensitive 
to precipitation than Reco (Delgado-Balbuena et al., 
2019) and that shifts in soil moisture and temperature 
drive the monthly variations of Reco (Hastings, Oechel, 
and Muhlia, 2005; Bell, Menzer, Troyo, and Oechel, 
2012). Whereas for Rsoil, the main study topic has been 
the spatial heterogeneity linked to different vegetation 
types (Cueva-Rodríguez, Yépez, Garatuza, Watts, and 
Rodríguez, 2012) or land uses (Yáñez-Díaz, Cantú, 
González, Jurado, and Gómez, 2017). Nevertheless, 
monthly precipitation and soil temperature have been 
recorded as the primary drivers of Rsoil in semiarid 
shrubland from Baja California (Leon et al., 2014). 

While Reco, in Mexican arid zones, is mainly 
measured using the eddy covariance method (Vargas 
et al., 2013), chamber-based methods are widely used 
to measure the Rsoil (Cueva-Rodríguez et al., 2016). 
In general, it has been shown the eddy covariance 
method has lower fluxes than chamber-based methods, 
with the contribution of the Rsoil to Reco being quite 
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heterogeneous, depending on the vegetation type, 
plant age, or the site biomass (Wang, Wang, and Bond, 
2017b). Since Rsoil is the main component of Reco, 
theoretically, Rsoil cannot be larger than Reco (Luo and 
Zhou, 2006). Nevertheless, current studies have not 
yet conf irmed that Reco is consistently higher than 
Rsoil at different spatial and temporal scales, indicating 
inconsistencies in measurement footprints, biases in 
the Reco or Rsoil measurements, or both (Barba et al., 
2018).

The wide range of interactions among the different 
variables and the spatial and seasonal variability in 
arid ecosystems has made it challenging to develop 
consistent models to identify the control factors that 
lead to their C balance (Roby et al., 2019; Estruch, 
Macek, Armas, Pistón, and Pugnaire, 2020). Structural 
equation modeling (SEM) allows exploring potential 
direct and indirect controls over Reco and Rsoil, with 
an aprioristic model in which the causal relationships 
among variables are included (Shipley, 2002; 
Iriondo, Albert, and Escudero, 2003). SEM aims to 
systematically study the impacts imposed by multi-
factors and evaluate the overall model performance 
instead of studying the individual effects (Grace, 2006; 
Eisenhauer, Bowker, Grace, and Powell, 2015; Wang, 
Zhou, Jia, and Ping, 2019b). Several studies have proven 
SEM to successfully f ind the controlling mechanisms 
of Rsoil obtained from f ield estimates (Matías, Castro, 
and Zamora, 2012; Flores-Rentería et al., 2018; Curiel-
Yuste et al., 2019). On the other hand, the number of 
studies that have applied the SEM methodology to 
explore the controlling mechanisms of the C fluxes 
with eddy covariance data has been increasing in the 
last decades (Chen, Yang, and Robinson, 2014; Wang, 
Zhou, Ping, Jia, and Li, 2018; Wang et al., 2019b). 

This study investigates the controlling mechanism 
of Reco and Rsoil in a xeric shrubland in the Chihuahuan 
Desert of Northeast Mexico, and indagate the 
relationship between both parameters. Specif ically, 
we answer the following questions: 1) Is the Reco value 
consistently higher than Rsoil through a year? 2) Are 
the precipitation, soil temperature, and photosynthetic 
active radiation the main causal controllers of Reco and 
Rsoil? Therefore, the following predictions were made: 
1) Since Reco is the sum of above-ground and below-
ground respiration, which includes Rsoil (Luo and Zhou, 
2006; Phillips and Nickerson, 2015), it is expected 
Reco values are consistently higher than the Rsoil; 

2) As precipitation, soil temperature, and shortwave 
radiation are the main CO2 balance controllers in arid 
ecosystems (Poulter et al., 2014; Ahlström et al., 2015), 
it is expected those variables have a direct causal effect 
on the Reco and Rsoil. 

MATERIALS AND METHODS

Site Description

Our study was carried out in the southeast of the 
Chihuahuan Desert, at General Cepeda municipality, 
in Coahuila de Zaragoza, México. Valleys and gentle 
hills characterize the topography. Climate conditions 
are dry, mean annual temperature is 17.5 °C with 
a maximum of 31.4 ºC in the warmest month and a 
minimum of 3.3 ºC in the coldest month (Fick and 
Hijmans, 2017). Mean annual precipitation is 493 mm, 
with the highest rainfall during July, August, and 
September (Fick and Hijmans, 2017). The dominant 
soils are leptosols (INEGI, 2007), very shallow with 
highly calcareous material (IUSS Working Group 
WRB, 2007). In this xeric semiarid shrubland, the 
dominant vegetation is composed of Fouquieria 
splendens, Larrea tridentata, Yucca carnerosana, 
Yucca f ilifera, Dasylirion cedrosanum, and several 
species of the Cactecaea family, such as Echinocactus 
spp., Echinocereus spp., Mammillaria spp., Opuntia 
spp., etc. (Granados-Sánchez, Sánchez, Granados, and 
Borja, 2011). 

Soil Respiration Measurements

Six f ield campaigns were conducted every two 
months, from June 2019 to April 2020. Soil respiration 
(Rsoil) was determined with a steady-state infrared gas 
analyzer (EGM-5; PP Systems, Amesbury, MA) and a 
portable dynamic closed chamber (SRC-1, PP Systems, 
Amesbury, MA, USA). Ten external PVC collars 
(10 cm diameter × 5 cm height at 3 cm depth into the 
soil) were inserted 24 h previous to the measurements. 
Two permanent 100 m lineal transects (20 m apart 
from each other) were established inside the footprint 
area of the micrometeorological tower. Five collars 
were inserted (spaced every 20 m) along each transect. 
The purpose of each collar’s temporary insertion was 
to minimize the impact of the soil alteration (e. g., 
underestimate Rsoil from roots) (Davidson, Savage, 
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Verchot, and Navarro, 2002; Heinemeyer et al., 2011). 
Each collar was re-inserted near the previous point at 
each new sampling event (30 cm). Rsoil measurements 
(60 sec) were carried out between 12:00-15:00 h at 
maximum daily soil temperature (Matías et al., 2012). 
Additionally, soil temperature and soil moisture at 
8 cm depth (Hydra Probe II, Stevens Water Monitoring 
Systems, Inc., Portland, USA), ambient temperature, 
ambient relative humidity (WatchDog 1450 Micro 
Station, Spectrum Technologies, Inc., Illinois, USA), 
and photosynthetically active radiation (PAR, MQ-
200 sensor, Apogee Instruments, Utah, USA) were 
recorded at each Rsoil sample point.

Soil Physicochemical Characterization

After Rsoil measurements, soil cores (2 cm in 
diameter) were taken from a depth of 0-15 cm in dry 
and rainy seasons (February and August, respectively). 
Soils were sieved (<2 mm) and air-dried. Soil pH was 
determined in a 1:2 (w:v) aqueous suspension (Orion 
Star A211, ThermoFisher Scientif ic, Inc, California, 
USA). Soil organic matter (SOM) was assessed by loss 
on ignition at 400 °C for 4 hours. 

Ecosystem-Scale Measurements

We installed a 3.5 m micrometeorological tower 
near the San Isidro community (25º 18′ 1.6′′ N, 101º 
23′ 32.51′′ W, 1703 m elevation). The eddy covariance 
system (LI-7900, LI-COR Biosciences, Lincoln, 
Nebraska, USA) consisted of an open path infrared 
gas analyzer (LI-7500DS) and a three-dimensional 
sonic anemometer (WindMaster Pro, Gill Instruments, 
Lymington, UK). Flux data were sampled at 10 Hz 
and stored in a 16 GB USB device in the SmartFlux® 
3 system, storing f iles in intervals of 30 min from 
May 2019 to May 2020. During the same period, 
meteorological variables were collected continuously 
at a rate of 1 s and averaged at 30 min intervals using 
a Datalogger (Sutron Xlite 9210, Sutron Corporation, 
USA). Relative humidity (RH) and air temperature 
(Tair) (Vaisala HMP155, Vaisala Corporation, Helsinki, 
Finland), net radiation was measured with a radiometer 
(NR-Lite2, Kipp & Zonen, Delft, Netherlands), and 
PAR was measured with a quantum sensor (LI-190R-
SMV-5, LI-COR Biosciences, Lincoln, Nebraska, 
USA) and a pyranometer sensor (LI-200R-SMV-5, LI-
COR Biosciences, Lincoln, Nebraska, USA). Soil heat 

flux measurements were implemented with three soil 
heat flux plates (HFP01, Hukseflux Thermal Sensors 
BV, Delft, Netherlands) at 8 cm depth. Additionally, 
three soil moisture and temperature probes (Hydra 
Probe II, Stevens Water Monitoring Systems, Inc., 
Portland, USA) were placed at 5 cm depth next to the 
heat plates, and a tipping bucket rain gauge (TE525, 
Texas Electronics, Dallas, USA) was installed three 
meters away from the micrometeorological tower. 
Meteorological and soil variables were measured 
every f ive seconds, averaged, and stored to half-hour 
intervals; rainfall was accumulated for the same time 
period. 

Raw eddy covariance data were processed in 
EddyPro® software version 7.0.6 (https://www.licor.
com/env/support/EddyPro/software.html), following 
standard procedures (Delgado-Balbuena et al., 2019). 
Wind velocities, sonic temperature, [CO2], and [H2O] 
signals were despiked considering outliers those values 
greater than ±3.5 SD (Vickers and Mahrt, 1997). 
Double rotation was applied to sonic anemometer wind 
velocities. Lags between the vertical wind velocity 
and scalars were removed with a cross-correlation 
procedure. C flux was estimated using a 30 min block 
average, and then they were corrected for air density 
fluctuations (WLP correction, Webb, Pearman, and 
Leuning, 1980). Fluxes were subjected to quality 
control procedures: i) stationarity (<50 %, Foken and 
Wichura, 1996), ii) integral turbulence characteristics 
(<50%), iii) flags of IRGA and sonic anemometer 
(Mauder and Foken, 2006), iv) range tests (±20 μmol 
CO2 m

-2 s-1) (Taylor and Loescher, 2013), v) a threshold 
of u*= 0.12 m s-1, which was def ined through the 99% 
threshold criterion after Reichstein et al. (2005) and 
nighttime fluxes below the threshold were removed 
(Zhu et al., 2006), and vi) 90% of cumulative fluxes 
(> 200 m, footprint model, (Kljun, Calanca, Rotach, 
and Schmid, 2004). In the data period, 35% of half-
hour data were lost after quality f iltering. Closure 
of energy balance was > 90% for the whole period. 
Storage flux was not estimated because of the low 
vegetation stature, and we assumed it would be 0 over 
a 24-h period (Loescher et al., 2006).

Data gaps were f illed with the Marginal 
Distribution Sampling algorithm (MDS, Reichstein 
et al., 2005). The online MPI Jena tool, www.bgc-jena.
mpg.de/REddyProc/brew/REddyProc.rhtml, based 
on the REddyProc R package (Wutzler et al., 2018), 
was used for this gap-f illing procedure and the flux 
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partitioning of NEE. Ecosystem respiration (Reco), i. e., 
outflux from the land surface (μmol m-2 s-1 as NEE), 
was estimated using the air temperature by the night-
time-based flux-partitioning algorithm (Reichstein 
et al., 2005). 

Data Analyses

Rsoil rates measured with EMG-5 (g CO2 m-2 h-1) 
were converted to micromoles of carbon dioxide per 
square meter per second (µmol CO2 m

-2 s-1), dividing 
by the conversion factor 0.1584 (Lamptey, Li, and Xie, 
2018). From the ecosystem scale measurements, only 
the Reco data from the days of the f ield campaigns of 
Rsoil, only ten half-hours were used (12:00-16:30). In 
these days/hours, non-gap-f illing data were used. 
These ten values per campaign were compared with 
the ten Rsoil sample points.

The difference between respiration (soil vs. 
ecosystem) at each f ield campaign was determined 
using a two-way Analysis of Variance (ANOVA) 
(P ˂ 0.05). The assumption of normality of residuals 
and homoscedasticity of the variance was met. 
Tukey’s honesty test was used to detect any signif icant 
differences between means. All ANOVAs were run in 
R (R-Core-Team, 2020).

To test the direct and indirect influence of the 
abiotic factors over Rsoil and Reco, and the relationship 
between those two C fluxes, computing structural 
equation models (SEMs) were implemented. Our 
model was a path analysis (Figure 1) which considered 
a complete set of hypotheses based on literature and 
own previous experience (Flores-Rentería et al., 2018; 
Curiel-Yuste et al., 2019; Wang et al., 2019b). In short, 
we hypothesized that radiation (PAR) would influence 
both air and soil temperature (Tair), as well as the 
soil water content (SWC; Jia et al., 2018; Wang et al., 
2018). The air temperature would influence the vapor 
pressure def icit (VPD), which, in turn, controls the soil 
temperature (Tsoil), SWC, Rsoil and Reco (Wang et al., 
2018; Wang et al., 2019b). A correlation between soil 
temperature and soil moisture, both affecting Rsoil 
and Reco was also taken into account (Flores-Rentería 
et al., 2018; Wang et al., 2018; Wang et al., 2019b). 
Additionally, soil pH could influence the Rsoil because 
it potentially reflects the punctual concentration of 
labile carbon (Phillips and Nickerson, 2015). Non-
signif icant loadings and pathways were sequentially 
eliminated by dropping the path with the largest 
nonsignif icant P-value each time, and the new model 
was re-parameterized. For instance, relative humidity 
(RH), had a non-signif icant effect over Rsoil and Reco; 

 
 Figure 1. General model of the path analyses representing hypothesized 
causal relationships among the environmental factors, soil, and ecosystem 
respiration.
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thus, this variable was no longer included in the 
model. Goodness-of-f it χ2 was used to select the f inal 
model, according to the covariance proximity between 
observed and expected data. Bentler and Bonett’s 
normed-f it index (NFI) was used to assess the data 
f it of the general model, where values >0.9 indicate 
an acceptable f it (Iriondo et al., 2003). Additionally, 
the root mean square error of approximation statistic 
(RMSEA) was used to assess the degree of f it between 
observed and expected structure of the covariance, 
where values <0.08 indicate a good f it (Steiger, 1990; 
Maccallum, Browne, and Sugawara, 1996). In all 
models, standardized path coeff icients were estimated 
by using the maximum likelihood algorithm (Shipley, 
2002). SEM analyses were performed by using SPSS® 
and SPSS® AMOS 20.0 software (IBM Corporation 
Software Group, Somers, NY). 

RESULTS AND DISCUSSION

Regarding variables had direct and indirect 
influences on the respiration rates in the SEM analyses, 
the soil pH and SOM on the study site had a mean of 
7.96 and 3.82%. Those values were higher for the pH, 
but lower for the SOM than the annual mean recorded 
in another shrubland (7.6 and 6.1%, respectively) and 

grassland (7.61 and 4.6% respectively) in the region 
(Yáñez-Díaz et al., 2017). Similar differences are 
observed when means for Tair, Tsoil, VPD, SWC, and 
PAR were compared regarding other arid ecosystems 
(Table 1). Table 1 enhance the high heterogeneity 
on those variables, particularly in North of Mexico, 
showing a large variety variation on the vegetation and 
orography (mirrored by differences in the elevation) 
among study sites as mentioned by larger scales studies 
(Anderson-Teixeira, Delong, Fox, Brese, and Litvak, 
2011; Montaño et al., 2016). 

The soil pH on the study site was slightly basic in 
February (7.99 ± 0.08) compared to the one recorded 
in August (7.93 ± 0.11). On the other hand, the SOM 
was slightly higher during February (4.00 ± 0.24%) in 
comparison with the one from August (3.64 ± 0.77%). 
Temporal variation is also evident when means of Tair, 
Tsoil, VPD, SWC, and PAR are compared among the 
different sampling dates (Figure 2). These results agree 
with long-term studies that analyze soil properties in the 
region, that have found important seasonal variations 
on these soil properties and environmental variables 
(Vargas et al., 2010; Lüneberg, Schneider, Siebe, and 
Daniel, 2018; Pontifes et al., 2018; Delgado-Balbuena 
et al., 2019). Further studies in the study site should 
test the seasonal variations on such variables in deep. 

Table 1. Means on pH, soil organic matter (SOM), air temperature (Tair), soil temperature (Tsoil), vapor pressure deficit (VPD), soil 
water content (SWC), and photosynthetic active radiation (PAR) of comparable studies carried out in the Chihuahuan Desert and 
North of Mexico.

Variable/Source This study Hastings et al. 
(2005)

Anderson-Texeira et al. 
(2011)

Leon et al. 
(2014) Yáñez-Díaz et al. (2017)

Altitude (m) 1703 19 1596 1605 406 380 380

pH 7.96 NA NA NA 7 7.6 7.61

SOM (%) 3.82 0.21 NA NA NA 6.1 4.6

Tair (ºC) 25.28 23.87 13.46 13.4 17 20.79 20.79

Tsoil (%) 29.9 NA NA NA 21.04 22.51 25

VPD (hPa) 23.27 28.12 NA NA NA NA NA

SWC (%) 6.66 NA NA NA NA NA NA

PAR (Wm-2) 1412.98 1700.34 NA NA NA NA NA

Vegetation Xeric 
shrubland

Sarcocaulescent 
shrubland Grassland Shrubland Xeric shrubland Thornscrub Grassland

Location Chihuahua, 
Mexico

Baja California, 
Mexico

New Mexico, USA Baja California, 
Mexico

Nuevo Leon, Mexico

NA = not available data. 
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Ecosystem Respiration Versus Soil Respiration

Annual mean Rsoil was 1.3 ± 0.14 mmol m-2 s-1, 
and Reco of 1.76 ± 0.12 mmol m-2 s-1, in this f irst study 
measuring the CO2 flux annual variation in a xeric 
shrubland in the Chihuahuan Desert in northeastern 
Mexico. Rsoil obtained in our study show a lower 
respiration annual rate than the one recorded in 
shrublands and grasslands from Nuevo Leon state 
(6.17 mmol m-2 s-1 and 4.61 mmol m-2 s-1, respectively; 
Yáñez-Díaz et al., 2017), but nearest to the one 
recorded in shrublands from Baja California state 
(0.97 mmol m-2 s-1; Leon et al., 2014). On the other 
hand, the comparison between Rsoil and Reco shows that 
both C fluxes exhibit a similar tendency throughout the 
year. Thus, the highest respiration rates (2.58 ± 0.32 
and 3.50 ± 0.05 mmol m-2 s-1 for Rsoil y Reco, respectively) 
were reached in June to decreasing until their lowest 
values in December (Reco 0.75 ± 0.01 mmol m-2 s-1) and 
February (Rsoil 0.57 ± 0.10 mmol m-2 s-1), and f inally 
showing a new increase in April (Figure 3). This intra-
annual respiration pattern contrast with those obtained 
for Rsoil in other arid shrubs and grasslands from 
Northern Mexico, where the maximum and minimum 
values are registered in different months: September/
October/November (maximum) and April/May/
August (minimum) (Leon et al., 2014; Yáñez-Díaz 

et al., 2017). Similar differences in the intra-annual 
Reco can be inferred from other Mexican arid zones 
by showing different peaks throughout their NEE 
values: July/August (maximum) and January/February 
(minimum) for a grassland in Jalisco state (Delgado-
Balbuena et al., 2019), and December (maximum) and 
July (minimum) for a shrubland in Baja California 
state (Hastings et al., 2005). It is possible variations in 
vegetation and climate (Salinas-Zavala, Douglas, and 
Diaz, 2002; Encina et al., 2016; Pontifes et al., 2018) 
might explain, in part, the aforementioned differences 
and similarities among respiration rates, as suggested 
in large scale studies (Vargas et al., 2010; de Graaff 
et al., 2014; Cueva-Rodríguez et al., 2016; Montaño 
et al., 2016).

Our results show Reco tend to have a higher 
respiration rate than Rsoil throughout the analyzed 
period with a Rsoil: Reco annual mean ratio of 0.72. 
Nevertheless, lower values of Reco regarding Rsoil 
were observed in April 2020, recording a contribution 
ratio of 1.33 (Figure 3). Studies that compare the 
contribution ratio of Rsoil to Reco, using chamber based 
and eddy covariance methods suggest that can be highly 
variable even in the same ecosystem (i. e., 0.37 to 1.38 
in temperate forests) (Janssens et al., 2001; Pilegaard, 
Hummelshøj, Jensen, and Chen, 2001; Curiel-Yuste, 
Nagy, Janssens, Carrara, and Ceulemans, 2005). 

Figure 2. Variation of environmental factors along the year in the southeast of 
the Chihuahuan Desert in the moment of the soil (Rsoil) and ecosystem (Reco) 
respiration measurements. Data = mean ± standard error; Tair = air temperature; 
Tsoil = soil temperature; VPD = vapor pressure deficit; SWC = soil water content; 
PAR = photosynthetic active radiation.
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As a result of the spatial-temporal heterogeneity in small 
scales, biophysical parameters (e. g., vegetation type, 
plant age, site biomass, SWC, soil C content among 
others) have a strong influence on soil respiration, 
making the eddy covariance method has lower fluxes 
than chamber-based methods (de Graaff et al., 2014; 
Wang et al., 2017b). Particularly, rain pulses that 
increase SWC, hot spots, or hot moments have direct 
effect on the Rsoil of arid ecosystems (Huxman et al., 
2004; Leon et al., 2014; Salazar, Sulman, and Dukes, 
2018). Thus, the higher Rsoil, regarding Reco, recorded 
in April may be due to the SWC and temperature 
increasing in that moment (Figure 2), which may not be 
considered in the data partition of the eddy covariance 
method and subsequently no reflected in the calculated 
Reco (Reichstein et al., 2005).

Even though the bias caused by the collars’ 
insertions in the Rsoil measurements was controlled, 
in part, by a shallow insertion (<5 cm) and measuring 
24 h after inserting them (Heinemeyer et al., 2011), it 
has been shown that steady-state-dynamic chambers 
tend to generate insuff icient or excessive turbulence 
inside the camera, resulting in measurement biases 
ranging from –21% to 33% of the known flux rate (Xu 
et al., 2006). Similarly, the poor representation of the 
spatial variability and a small area of measurement 
also have been identif ied as other factors in the bias 

of Rsoil estimations (Savage and Davidson, 2003). 
Regarding the Reco measurements, a low atmospheric 
mixing at night has been argued as the largest 
limitation in Eddy Covariance CO2 measurements 
(Burba and Andersen, 2010; Burba, 2013). Thus, Reco 
estimation method based on the light response curve 
(NEE~Radiation; Lasslop et al., 2010) might result in 
consistently highest Reco values. Finally, the high Rsoil 
registered in April may be due to a non-biological CO2 
source such as the carbonate weathering, as has been 
observed in other semiarid ecosystems with calcareous 
or carbonate-rich soils during dry periods (Emmerich, 
2003; Ma, Wang, Stevenson, Zheng, and Li, 2013). 
Discrepancies on the Rsoil contribution to Reco are 
not yet clear, and the analysis of those is beyond the 
reach of this study. Nevertheless, considering the large 
proportion of Reco values were explained at this half-
hourly scale (Figure 3), it is possible that the mismatch 
of the Reco and Rsoil observed in our study may have been 
caused by altering the diffusive regime in the chamber 
measurements for Rsoil (Phillips et al., 2017).

The intra-annual tendency of both measurements 
approaches observed in our results was similar 
(Figure 3), showing the higher values during the rainy 
season (June to October) compared to the dry one, 
except Rsoil in April 2020. This pattern of higher CO2 
releasing throughout the rainy season is in agreement 

 
 Figure 3. Soil (Rsoil) and ecosystem (Reco) respiration along the year in the southeast 

of the Chihuahuan Desert. Triangles and circles represent mean values. Error bars 
represent standard errors. Significant differences between respirations for a given 
sampling event are indicated with asterisks on the X axis, according to Tukey’s post-
hoc (P ˂ 0.05) comparison of the two-way ANOVA results.
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with the observed in studies where high root respiration 
has been described (Wang and Guo, 2006; Chen et al., 
2014; Leon et al., 2014; Li et al., 2018; Roby et al., 
2019). Therefore, here is reinforced the idea that Rsoil 
depends on the frequency of rain events (Montaño 
et al., 2016; Roby et al., 2019; Wang, Chen, Li, Qian, 
and Yu, 2019a; Estruch et al., 2020).

Controlling Factors

SEM analysis was performed with data 
corresponding to the campaign where Rsoil was 
measured to explore its relationship with Reco, along 
with the controlling mechanism of both fluxes. A crucial 
role in the soil dynamics has been shown for the SOM 
in other environments of the region (e. g., Hernández-
Becerra et al., 2016; García-Oliva, Elser, and Souza, 
2018). Nevertheless, this variable coupled with RH did 
not have signif icant effects on the Rsoil in our study, 
being excluded from the subsequent SEM analyses 
(Figure 4). The model shows a good data f it (P = 0.95, 

NFI = 0.99, GFI = 0.99 and RMSEA < 0.001), explaining 
a high proportion of variance of Rsoil (R

2 = 0.50), and 
Reco (R

2 = 0.93; Figure 4). The explained variance by 
the SEM is comparable with previous studies analyzing 
the causal relationships among environmental factors 
and CO2 flux, specif ically in arid ecosystems (Matías 
et al., 2012; Shao et al., 2016; Flores-Rentería et al., 
2018; Yang, Ali, Xu, Jiang, and Lv, 2019).

Rsoil was affected by the Tair followed by VPD 
(negatively), Tsoil (negatively), SWC, and pH 
(negatively). Reco was controlled by SWC followed by 
Tair, VDP (negatively), Rsoil, and Tsoil. The total effects 
showed that VPD has both direct and indirect effects 
over Reco and Rsoil (Table 2), accounting for the total 
effect over these; when VPD increases, both fluxes 
decrease on a daily scale. The VDP is considered a 
proxy for plant water stress because it controls stomatal 
water loss and plant carbon absorption (Hashimoto 
et al., 2008). When VPD increases, the stomatal closure 
affects both autotrophic and heterotrophic respiration 
(Shao et al., 2016; Roby et al., 2019). On the other hand, 

 
Figure 4. Structural equation models representing hypothesized causal 
relationships among the environmental factors, soil, and ecosystem respiration. 
Arrows represent causal relationships: positive (solid lines) and negative (dashed 
lines) effects, with numbers indicating standardized estimated regression weights 
(SRW). Arrow widths are proportional to significance values according to the 
legend. Paths with coefficients non-significant are in gray. NFI = 0.99; GFI = 0.99; 
RMSEA < 0.001; χ2 = 3.44; p = 0.95; n = 60. PAR = photosynthetic active radiation.



10
TERRA LATINOAMERICANA VOLUMEN 39, 2021. e1251

Artículo perteneciente al número especial del Programa Mexicano del Carbono

radiation (i. e., PAR) showed only weak indirect effects 
over Reco and Rsoil through its effect on Tair, Tsoil, and 
SWC. Furthermore, the estimated regression weight of 
Tair on both Rsoil and Reco was higher in comparison 
with Tsoil (Figure 4). A higher carbon input into the 
soil could explain this higher positive effect over Rsoil, 
instead of the release of stored older carbon (Bond-
Lamberty and Thomson, 2010). 

The two primary environmental drivers of biological 
soil and ecosystem respiration are temperature and 
moisture, but whit different contribution depending 
on the type of ecosystem. It is also known that soil 
dynamics in arid ecosystems tend to exhibit a higher 
spatial and temporal variability associated with the 
biological activity of soil microorganism, biocrusts, 
and plant roots (Sponseller, 2007; Cable et al., 2012; 
Phillips and Nickerson, 2015; Wang et al., 2017a). 
These variables act directly over the root and microbial 
respiration and indirectly regulating respiration derived 
by photosynthesis and plant growth (Davidson, 
Janssens, and Luo, 2006; Davidson, Samanta, 
Caramori, and Savage, 2012). Thus, the strong effect of 
Tair, SWC, and VPD over the Rsoil and Reco observed in 
our results reinforces the idea that the plant component 
plays a crucial role in the control of CO2 efflux of this 
ecosystem (Vargas et al., 2011; Estruch et al., 2020). 
This strong vegetation influence over the CO2 efflux, 
both Rsoil and Reco in the semiarid ecosystems, has been 
consistently described (Vargas et al., 2011; Cable et al., 
2012; Delgado-Balbuena et al., 2019; Roby et al., 
2019; Yang et al., 2019; Estruch et al., 2020). 

CONCLUSIONS

The studied xeric shrubland in the Chihuahuan 
Desert had a Reco mean of 1.76 ± 0.12 mmol m-2 s-1, 
with 1.3 ± 0.14 mmol m-2 s-1 of Rsoil contribution 
(71.94%). As expected, Reco values were larger than 
Rsoil throughout most of the analyzed period, except 
in April measurements. So far, inconsistencies of 
the Rsoil contribution to the Reco have been mainly 
recorded in temperate forests. The structural equation 
models explained 93% and 50% of the Reco and Rsoil 
total variance, respectively. Tair was found as the 
most weight Rsoil controller, whereas the SWC was 
it for the Reco, both having positive direct effect. 
Unexpectedly, VPD was the most weight variable 
with a direct negative effect on Reco, supporting the 
idea that the vegetation component has a crucial 
role in the CO2 efflux of this ecosystem. In order to 
reach a better understanding of the CO2 dynamics and 
their components in this environment, further studies 
should explore the Reco long-term patterns, including 
the seasonal tendency. In addition, partitioning the Rsoil 
contribution to Reco, or testing another Reco estimation 
method (e. g., based on the light response curve, 
NEE~Radiation) might improve the Reco values, and 
subsequently, the estimation of the Rsoil : Reco ratio.
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Table 2. Standardized direct, indirect, and total effects of environmental factors for soil and ecosystem respiration (See Figure 4). 
Significant direct effects are indicated in bold.  

Effect Tair PAR VPD SWC Tsoil pH

Rsoil

Direct 0.815 --- -0.419 0.31 -0.381 -0.23

Indirect -0.179 -0.071 -0.102 --- --- ---

Total 0.636 -0.071 -0.522 0.31 -0.381 -0.23

Reco

Direct 0.512 0.071 -0.421 0.625 0.168 ---

Indirect 0.081 -0.107 -0.31 0.062 -0.076 -0.046

Total 0.593 -0.036 -0.731 0.687 0.092 -0.046

Reco = ecosystem respiration; Rsoil = soil respiration; Tair = air temperature; PAR = photosynthetically active radiation; VPD = vapor pressure deficit; SWC = soil 
water content; and Tsoil = soil temperature. 
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