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SUMMARY

Phosphorus (P) availability in the soil is a limiting nutrient for biomass production 
in agroecosystems developed in Andosols. Nonetheless, it remains unknown how 
soil structure af fects the storage and availability of this nutrient. Thus, this research 
aimed to evaluate the role of soil structure in phosphorus availability using Olsen 
P as a chemical indicator of availability. Undisturbed and disturbed soil samples 
were collected following a grid pattern under naturalized and sowed pastures that 
reflected two dif ferent soil structures (untilled and tilled, respectively). The untilled 
soil showed higher variability and a higher concentration of Olsen P (5-27 mg kg-1) 
than the tilled soil (14 mg kg-1).

Undisturbed samples collected in cylinders showed that Olsen P continues 
to increase af ter removing the soil from the cylinder, sieving the sample, and re-
extracting Olsen P, resulting in three times the amount of Olsen P found in disturbed 
samples collected before the experiment. The methodological approach used in this 
research allowed to highlight the role that soil structure plays in the availability of P 
over time to improve the ef ficiency of nutrient utilization.

Index words: allophane, Olsen P, spatial heterogeneity.

RESUMEN

La disponibilidad de fósforo (P) en el suelo es un nutriente limitante para la 
producción de biomasa en agroecosistemas desarrollados en Andosoles. Sin 
embargo, aún se desconoce si la estructura del suelo afecta el almacenamiento y la 
disponibilidad de este nutriente. Por lo tanto, esta investigación tuvo como objetivo 
evaluar el rol de la estructura del suelo en la disponibilidad de fósforo utilizando el  
P Olsen como indicador. Se tomaron muestras de suelo no disturbadas y disturbadas 
siguiendo un patrón de cuadrícula bajo praderas naturalizadas y sembradas que 
reflejaban dos estructuras de suelo diferentes (sin labrar y labrado, respectivamente). 
El suelo no labrado mostró una mayor variabilidad y concentración de P Olsen  
(5-27 mg kg-1) que el suelo labrado (14 mg kg-1).

Las muestras no disturbadas recolectadas en cilindros mostraron que el P Olsen 
continúa aumentando después de retirar el suelo del cilindro, tamizar la muestra 
y volver a extraer el P Olsen, lo que da como resultado una cantidad de P Olsen 
tres veces mayor que la encontrada en las muestras disturbadas recolectadas antes 
del experimento. El enfoque metodológico utilizado en esta investigación permitió 
resaltar el papel que juega la estructura del suelo en la disponibilidad de P a lo largo 
del tiempo para mejorar la eficiencia de la utilización de nutrientes.

Palabras clave: alofán, P Olsen, heterogeneidad espacial.
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INTRODUCTION

Phosphorus is vital for energy transfer in plants and root development; low amount of available phosphorus 
may be due to immobilization according to the soil texture (Gen-Jiménez et al., 2025).

Soils derived from volcanic ash are deficient in plant-available phosphorus (P) due to their high retention 
capacity (> 85%; Valle, Carrasco, Pnochet, Soto, and Mac Donald, 2015; Vásconez, and Pinochet, 2018). It is, 
therefore, necessary to fertilize these soils with high amounts of P to increase the soil P supply during the growing 
season (Rodríguez, Pinochet, and Matus, 2001). The soil P availability is of ten determined through chemical 
extraction indices that reflect the available P fraction, such as Mehlich 1, Bray 1, and Olsen (Ryan, and Rashid, 
2018). These indices have been validated through calibrations between yield and crop P uptake, allowing their 
use as diagnostic tools for soil fertility (Sandaña, and Pinochet, 2016; Vásconez, and Pinochet, 2018). However, the 
soil has a heterogeneous distribution of available P content, i.e., there will be soil spots with a high P content and 
other areas with a low P content, which contrasts with the assumption that the soil is homogeneous before any 
extraction (Pinochet, 19951). P is an immobile nutrient in the soil, i.e., phosphates have low solubility, short distance 
dif fusion, and depend on the adsorption sites. It is assumed that these adsorption sites are not dependent on 
soil structure. Therefore, we hypothesized that soil structure (i.e., a network porous system) is a key factor in 
soil functions (Bronick, and Lal, 2005), providing substantial amounts of available P, and therefore, P availability 
determined through Olsen P overestimates available P over time. This research aimed to evaluate the role of soil 
structure on phosphorus availability in pastures under two levels of structuring (tilled and untilled).

MATERIALS AND METHODS

Soil samples were collected at a pasture at the Estación Experimental Agropecuaria Austral (EEAA) of the 
Universidad Austral de Chile (39° 46’ S, 73° 13’ W, 12 meters of altitude) located in the city of Valdivia, Chile.  
The mean annual temperature there is between 11-12 °C and the mean annual precipitation is between 1800-
2400 mm (González-Reyes, and Muñoz, 2013; Dörner et al., 2022). 

Southern Chilean soils derived from volcanic ash have developed in mesic temperature and udic moisture 
regimes are classified as Duric Hapludand (CIREN, 2003) or Silandic Andosol (IUSS Working Group WRB, 2022), 
are characterized by a highly reactive non-crystalline clay fraction (i.e., allophane and imogolite) (Clunes, and 
Pinochet, 2021). These soils have values of extractable aluminum in ammonium acetate of > 800 mg kg-1 (Clunes, 
Dörner, and Pinochet, 2021), NaF pH values of ≥ 9.4 (Valle et al., 2015), pH in water 5.4-5.8 (Zúñiga et al., 2023), 
high soil organic matter content (> 12%; Matus, Rumpel, Neculman, Panichini, and Mora, 2014; Bravo et al., 2020) 
and low bulk density < 0.9 Mg m-3 (Dörner et al., 2022).

Soil Sampling and Design

To evaluate the ef fect of pasture management on soil structure and P availability, disturbed soil samples 
were collected with an auger, and undisturbed soil samples were collected in steel cylinders (h =5.60 cm and  
Ø = 7.15 cm) at a depth of 0-20 cm (depth commonly used to evaluate soil fertility; Rodríguez et al., 2001 and 
which represents the genetic Ap horizon; Bravo et al., 2020). Samples were collected from two pasture conditions: 
i) naturalized-degraded pasture > 10 years or untilled (T1) and ii) sown pasture < 1 year or tilled (T2). To evaluate 
the spatial dependency of P availability, the sampling in T1 and T2 was conducted following a grid pattern  
(20 m × 20 m) using the center of the plots as a reference.

Laboratory Analyses

For the disturbed soil samples, the Olsen P methodology (Olsen P, classic) was used to determine soil  
P availability (Sadzawka et al., 2006). However, for the undisturbed soil samples, modifications to the classic 
methodology were made to adjust the analysis (Olsen P, cylinder). Briefly, the cylinders with soil were placed 
in Buchner funnels and connected to a vessel that received an extractant solution of NaHCO3 (0.5 M - pH 8.5).  
For each sample, 4 L of NaHCO3 was applied, maintaining the soil:solution ratio (1:2.5) of the classical methodology 
(Sadzawka et al., 2006) to avoid variations in the chemical equilibrium during the extraction process. The ratio was 
adjusted considering the bulk density of the soil (0.75 Mg m-3 according to Dörner et al., 2022). The solution was 
applied to the soil using drippers, which allowed homogeneous percolation inside the cylinder with soil. Once 
all the solution had been received, it was homogenized and filtered. Then, 5 mL of the filtrate was collected in a 
glass container and 20 mL of the color development reagent was added. Finally, it was lef t to stand for 60 min for 
the colorimetric reading of molybdenum blue using a spectrophotometer (Sadzawka et al., 2006). The activated 
charcoal application and shaking process were not carried out. 

1 Pinochet, D., (1995). The residual ef fect of applications of phosphate fertilizer measured by the Olsen method. Doctoral dissertation, Thesis of Doctor of Philosophy, 
The University of Reading, United Kingdom.
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Olsen P Statistical Analysis

The Olsen P extraction method (classic and cylinder) and the soil conditions (tilled and untilled) were assessed 
with a two-way ANOVA with interaction using the ‘lm’ procedure in R Studio (R Core Team, 2020). Means and 
standard errors were estimated with the package ‘emmeans’ (Lenth, 2023). 

Olsen P spatial dependency was modeled for each combination of tillage levels and P extraction method with 
a 2-dimensional P-splines linear mixed model, as proposed by Boer (2023), and implemented in the R-Package 
LMMsolver as indicated in Equation (1). 

𝑝𝑝�� = 𝜇𝜇 + 𝑥𝑥� + 𝑦𝑦� + 𝑠𝑠(𝑥𝑥)� + 𝑠𝑠(𝑦𝑦)� + 𝜖𝜖��                       (1)

Where pij is the observation at the ith position on the row coordinates and the jth position on the columns. 
xi and yj are the row and column positions, which are fitted as linear covariates. s(x)i is the smooth (p-spline) 
component along the rows and s(y)j is the smooth (p-spline) component along the columns with 20 segments in 
both directions. ϵij is a homogeneous residual. 

Results were visualized as; i) the dif ference between the predicted surfaces and the mean of the observed 
Olsen P at each combination of extraction method and soil condition (expressed as a percentage of the mean), 
and ii) the dif ference between the predicted surface for the classic and the cylinder method. 

RESULTS AND DISCUSSION

Comparison of Olsen P Classic and Olsen P Cylinder Methods

Olsen P was measured with the classic method and in a soil cylinder. There was a strong ef fect of the soil 
processing method (P < 0.001, the mean of the classical method was 14.2 mg kg-1, the mean of the cylinder 
method was 9.4 mg kg-1, and the s.e.m - 0.6 mg kg-1). In contrast, the main ef fect of the tillage and the soil by tillage 
interactions were non-significant. Furthermore, the dif ference between the classical method and the cylinder 
method was of similar magnitude, regardless of the soil and the Olsen P level, as shown by the points below the 
1:1 line in Figure 1 (except for two samples that had much higher Olsen P values at the classic method and that 
corresponded to samples obtained in untilled soil). When removing both extreme points that were observed in 
the classic method, both methods were positive and linearly associated (P = 0.048, Figure 1). However, the slope 
in the equation was small (y = 3.91 + 0.48x, Figure 1), suggesting that the Olsen P ef fectively available (cylinder 
method) might be lower than the Olsen P obtained by the classic method. The higher values for the classic method 
suggest that soil sample homogenization destroys the soil aggregates and releases the Olsen P stored, making it 
more detectable during the quantification procedure. The Olsen P determination in cylinders showed that while 
the concentration of available P in the tilled samples decreased (between 4 and 17 mg kg-1), the variability in the 
untilled increased (Figure 2C). Soil structure, as a parameter of soil function, greatly af fects nutrient cycling, thus 
influencing the nutrients available to roots (Vogel et al., 2018; Clunes et al., 2021). Soil structure indicators, such 
as aggregate stability, water movement, and pore connectivity, allow for the partial assessment of this function 
because nutrient storage and recycling also depend on soil chemical properties (Rabot, Wiesmeier, Schlü, and 
Vogel, 2018). Therefore, P could be stored in the soil both chemically and physically because P is indirectly 
involved in soil aggregation. While it is true that we do not provide measurements of soil vegetation cover, 
below-ground biomass production, colonization of arbuscular mycorrhizal fungi, and the formation of phosphate 
bonding agents, we recognize these properties as valuable elements that help to understand the role of physical 
protection in the P availability in the soil (Bronick, and Lal, 2005; Borie et al., 2019). It is essential to relate the 
ef fect of soil structure on P availability in pastures because an average estimate from a representative number 
of samples (homogenizing the soil condition and disrupting the soil aggregates) results in an overestimation 
of available P and therefore an over-fertilization, which leads to an unbalanced and inef ficient nutrient use. This 
ef fect is supported by the dif ferences in Olsen P concentration, which was obtained in extreme conditions of the 
experiment (14 mg kg-1 in tilled-classic vs. 8 mg kg-1 untilled-cylinder), as shown in Table 1.
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Spatial variation of soil Olsen P

Although there was variation in the Olsen P for the four combinations of soil Olsen P, the spatial dependence 
was very low. This is reflected in the low ef fective dimensions for the linear and spline spatial components, and 
in the predicted surfaces (Figure 2). In most cases, the variation was low, with ranges within the ± 20% variation, 
relative to the mean of the observed Olsen P, leading to standard deviations of 7.8 % (tilled, classic, Figure 2A),  
7.2 % (tilled, cylinder, Figure 2B) and 7.5 % (untilled, cylinder, Figure 2D). The exception was one point in the 
untilled, classical, which had 28.4 mg kg-1 Olsen P, leading to a standard deviation of 42.2% (expressed as a 
percentage of dif ference compared to the mean of the observations, Figure 2C).

It has been reported that factors such as reduced pasture growth due to drought or lack of irrigation in the 
summer, water accumulation in areas of the pasture during winter, poor grazing frequency and less palatable 
species can result in reduced nutrient removal from the pasture and hence greater spatial variability of P in a 
permanent pasture (Cotching, Taylor, and Corkrey, 2020). In addition, P accumulation in the upper centimeters 
of soil in the degraded permanent pasture may also be due to the prolonged period during which this soil was 
undisturbed (Nze-Memiaghe, Cambouris, Ziadi, Karam, and Perron, 2021), which for this study was over 10 years 
(Descalzi, López, Kemp, Dörner, and Ordóñez, 2020). In general, a sampling depth of 0 to 20 cm is recommended 
for soil fertility tests, leading to a mixing of soil layers; in the case of untilled permanent pastures, the spatial 
variability of P presents points with higher P concentrations (Toor et al., 2020). In this context, the decision to 
collect 0 to 20 cm disturbed soil samples aims to define whether the soil has the Olsen P concentration required for 
adequate pasture nutrition, which, for Andosols, should be around 20 mg kg-1 (Vistoso, Iraira, and Sandaña, 2021). 

 

Figure 1. Association between the Olsen P determined by the classic 
method (Olsen P, classic) in disturbed soil samples (Tilled) and the 
Olsen P determined in undisturbed soil samples (Olsen P, cylinder; 
Untilled). The black line represents the 1:1 relationship.

Pasture condition Method Olsen P mean

Tilled
Classic 14.17 A**

Cylinder 10.64 AB

Untilled
Classic 11.96 AB

Cylinder 8.12 B**

Table 1. Multiple comparison among Olsen P means for tilled and untilled pastures.

** Indicate significance dif ferences between means (P = 0.0032).
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This critical value is due to the formation of complexes between Al- or Fe- and colloidal material (organic carbon, 
allophane, and imogolite) that permit the retention of large quantities of soil organic P (Redel et al., 2016). Werner 
et al. (2017) reported that in soil aggregates from P-rich areas, P was co-located with aluminum, iron oxides, and 
hydroxides, while in soil aggregates from P-depleted areas, the phosphorous was bonded to the soil organic carbon. 
This would be related to P accretion areas or small “pockets” through a process of re-sorption in soil aggregates 
(Pinochet, 1995). This hypothesis has not yet been probed, but it is an interesting approach that supports the idea 
of physical protection of P proposed in this preliminary study. Therefore, the amount of soil P available for plants 
should be above the critical level at which the crop does not respond to the application of P fertilizer, which ensures 
a high crop yield without causing severe risks of contaminating the agroecosystem (Díaz, and Torrent, 2016). 

Pastures on volcanic soils in southern Chile have high organic P storage (848-1065 mg kg-1), and the availability 
of this nutrient is mainly regulated by the formation of amorphous Al-Po complexes (Redel et al., 2016). Phosphate 
fertilizer applications increase the concentration of available P in the soil solution, which allows for a rapid dif fusion of P 
to the root system and, thus, an increased P uptake by plants (Vistoso et al., 2021). However, underestimating the initial 
P content in the soil using chemical extraction methods that do not consider the soil structure in which the root system 
grows and from which it absorbs P, results in an inef ficient and far from rational application of phosphate fertilizers.

 

Figure 2. P-spline predicted surfaces for Olsen P for A) Tilled soil, classical method, B) Tilled 
soil, cylinder method, C) Untilled, classical method, and D) Untilled, cylinder method. Color 
scale is proportional to the percentage of change at each grid position, relative to the mean of the 
predicted surface. The mean and the range of the predicted surface are indicated below the title 
for each combination of soil and method. The standard deviation is expressed as the percentage of 
change in relation to each mean.



P á g i n a  | 6

TERRA LATINOAMERICANA VOLUMEN 43, 2025. e2047

https://www.terralatinoamericana.org.mx/

CONCLUSIONS

 Through the approach presented, this preliminary report seeks to spotlight the importance of soil structure on 
nutrient availability, especially for P, an immobile and highly retention nutrient in volcanic soils.

Soil structure plays a relevant role in the capacity to deliver available P over space and time. The above can 
be particularly relevant in agroecosystems that promote soil conservation, including zero tillage, natural pastures 
such as steppes, and sown areas when aggregate formation begins. 

We are conscious that the limitations of this preliminary experiment should be considered for future research 
in the area, such as the relationship between soil P availability rate and plant P uptake, site climatic conditions, and 
soil P supply during the growing season. 
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