Application Route and Dose of Silicon in the Production of Cucumber Grown in Tezontle
DOI:
https://doi.org/10.28940/terralatinoamericana.v43i.2248Keywords:
protected agriculture, Cucumis sativus, beneficial elements, diatomaceous earthAbstract
The accelerated growth of the population increases the demand for vegetables such as cucumber (Cucumis sativus L.). In addition, challenges such as limited arable land and water availability, as well as the negative impacts of climate change, create the need to use substrates as cultivation media and to implement sustainable alternatives to increase yields, such as the use of beneficial elements. The objective of this study was to evaluate two silicon application routes, root and foliar, and three doses (0, 500, 1000, and 1500 mg L-¹) on production, fruit quality, and foliar nutrient content of cucumber grown in tezontle under protected conditions. Treatments were arranged in the field using a randomized complete block design with five replications. Yield increased by 36 and 43.9% with the application of 1500 mg supplied directly to the root and via foliar application, respectively, and by 33% with 1000 mg via foliar application. Fruit firmness increased by 19 and 20% with the application of 1500 mg to the foliage and the root, respectively; whereas this same dose, when applied to the root, increased fruit pH by 4.9%. When 1500 mg was applied to the root, leaf macronutrient content increased by 4.8% for S and 32.9% for N. In contrast, foliar application of 500 mg of silicon increased heavy metal content by 14% for Zn and 61% for Fe; however, these contents decreased with doses of 1000 and 1500 mg, regardless of the application method. Therefore, silicon application increased cucumber yield and fruit quality, modified foliar nutrient content, and the most appropriate dose was 1500 mg supplied either to the root or foliarly.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- Terra Latinoamericana
- Publisher
- Mexican Society of Soil Science, C.A.
References
Association of Official Analytical Chemists, International (AOAC). (1980). Official Methods of Analysis of AOAC. Washington, D. C. USA. 1018 p.
Cázarez-Flores, L., Partida-Ruvalcaba, L., Velázquez-Alcaraz, T. J., Zazueta-Torres, N. D., Yáñez-Juárez, M. G., Angulo-Castro, A. y Díaz-Valdés, T. (2024). Respuesta de dos variedades de pepino (Cucumis sativus L.) al Silicio y Cloro aplicados en casa sombra. Terra Latinoamericana. 42, 1-9. https://orcid.org/0000-0002-8285-0601.
Chakraborty, S. & Rayalu, S. (2021). Health beneficial effects of cucumber. In: H. Wang (ed.). Cucumber economic values and its cultivation and breeding (pp.75-84). IntechOpen.
De Olivera, A. L., Rodríguez, C. F. J., Da Silva, L. D., Abreu-Junior, C. H. & De Mello, P. R. (2023). Silicon mitigates the effects of potentially toxic metals. In: R. P. De Mello (ed.). Benefits of silicon in the nutrition of plants (pp.237-251). Springer Cham.
Duo, Z., Feng, H., Zhang, H., Elsayed, A. A., Zhang, F., Li, Z. & Fan, J. (2023). Silicon application mitigated the adverse effects of salt stress and déficit irrigation on drip-irrigated greenhouse tomato. Agricultural Water Management. 289, 1-12. https://doi.org/10.1016/j.agwat.2023.108526.
Faroutine, G., Arteaga-Ramírez, R., Pineda-Pineda, J. & Vázquez-Peña, M. A. (2023). Effect of calcium silicate and moisture content of the substrate on the growth and productivity parameters of cucumber. Chilean Journal of Agricultural Research. 83(3), 334-346, http://dx.doi.org/10.4067/S0718-58392023000300334.
Gaur, S., Kumar, J., Kumar, D., Chauhan, D. K., Prasad, M. S. & Srivastava, K. P. (2020). Fascinating impact of silicon and silicon transporters in plants: A review. Ecotoxicology and Environmental Safety. 202, 1-18. https://doi.org/10.1016/j.ecoenv.2020.110885.
Gawkowska, D., Cybulska, J. & Zdunek, A. (2018). Structure-related gelling of pectins and linking with other natural compounds: a review. Polymers. 10(7), 1-25. https://doi.org/10.3390/polym10070762.
González-García, Y., Flores-Robles, V., Cadenas-Pliego, G., Benavides-Mendoza, A., De la Fuente, M. C., Sandoval-Rangel, A. & Juárez-Maldonado, A. (2022). Application of two forms of silicon and their impact on the postharvest and the content of bioactive compounds in cucumber (Cucumis sativus L.) fruits. Biocell. 46(11), 2497-2506. https://doi.org/10.32604/biocell.2022.021861.
González-Terán, J. E., Gómez-Merino, F. C. & Trejo-Tellez, L. I. (2020). Effects of silicon and calcium application on growth, yield and fruit quality parameters of cucumber established in a sodic soil. Acta Scientiarum Polonorum Hortorum Cultus. 19(3), 149-158. https://doi.org/10.24326/asphc.2020.3.13.
Gouranga, S., Nagdev, P., Jeer, M. & Murali-Baskaran, R. K. (2023). Silica nanoparticles mediated insect pest management. Pesticide Biochemistry and Physiology. 194, 1-10. https://doi.org/10.1016/j.pestbp.2023.105524.
Hu W., Su, Y., Zhou, J., Zhua, H., Gou, J., Hou, H. & Gong, H. (2022). Foliar application of silicon and selenium improves the growth, yield and quality characteristics of cucumber in field conditions. Scientia Horticulturae. 9(10), 1-10. https://doi.org/10.3390/horticulturae9101126.
Hu, Y. A., Xu, N. S., Qin, N. D., Li, W. & Zhao, Q. X. (2020). Role of silicon in mediating phosphorus imbalance in plants. Plants. 10(1), 1-14. https://doi.org/10.3390/plants10010051.
Jia, H. & Wang, H. (2021). Introductory chapter: studies on cucumber. In: H. Wang (ed.). Cucumber economic values and its cultivation and breeding (pp.1-8). IntechOpen. Londres, Inglaterra.
Khan M. N., Siddiquib, M. H., Alhussaen, K. M., El-Alosey, A. R., Atallah, M. A. M. & Kalajic, H. M. (2023), Titanium dioxide nanoparticles require K+ and hydrogen sulfide to regulate nitrogen and carbohydrate metabolism during adaptive response to drought and nickel stress in cucumber. Environmental Pollution. 134, 1-12. https://doi.org/10.1016/j.envpol.2023.122008.
Liu, X., Huang, Z., Li, Y., Xie, W., Li, W., Tang, X., Ashraf, U., Kong, L., Wu, L., Wang, S. & Mo, Z. (2020). Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice. Ecotoxicology and Environmental Safety. 196, 1-9. https://doi.org/10.1016/j.ecoenv.2020.110525.
Meneses-Fernández, C. y Quesada-Roldán, G. (2018). Crecimiento y rendimiento del pepino holandés en ambiente protegido y con sustratos orgánicos alternativos. Agronomía Mesoamericana. 29(2), 235-250. http://dx.doi.org/10.15517/ma.v29i2.28738.
Mills-Ibibofori, T., Dunn, B., Maness, N. & Payton, M. (2019). Use of diatomaceous earth as a silica supplement on potted ornamentals. Horticulturae. 5(1), 1-12. https://doi.org/10.3390/horticulturae5010021.
Osuna-Zárate, A. P., Robledo-Torres, V., Mendoza-Villarreal, R. & Sandoval-Rangel, A. (2023). Effect of silicon and humic substances on the productivity and absorption of minerals in cucumber. Agro Productividad.16, 55-66. https://doi.org/10.32854/agrop.v16i8.2435.
Ouellette, S., Goyette, M. H., Labbé, C., Laur, J., Gaudreau, L., Gosselin, A., Dorais, M., Deshmukh, K. D. & Bélanger, R. R. (2017). Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions. Frontiers in Plant Science 8, 1-11. https://doi.org/10.3389/fpls.2017.00949.
Pal, A., Adhikary, R., Shankar, T., Sahu, A. K. & Maitra, S. (2020). Cultivation of cucumber in greenhouse. In: S. Maitra, J. Dinkar. & T. Shankar (eds.). Protected cultivation and smart agricultura (pp.139-145). New Delhi Publishers.
Pavlovic J., Kostic, L., Bosnic, P., Kirkby, A. E. & Nikolic, M. (2021). Interactions of silicon with enssential and beneficial elements in plants. Frontiers in Plant Science. 12, 1-19. https://doi.org/10.3389/fpls.2021.697592.
Preciado-Rangel P., Reyes-Pérez, J. J., Ramírez-Rodríguez, S. C., Salas-Pérez, L., Fortis-Hernández, M., Murillo-Amador, B. & Troyo-Diéguez, E. (2019). Foliar aspersion of salicylic acid improves phenolic and flavonoid compounds, and also the fruit yield in cucumber (Cucumis sativus L.). Plants. 8(2), 1-8. https://doi.org/10.3390/plants8020044.
SAS. 2017. Statistical Analysis System Institute. SAS User’s Guide version 9.4. Cary N. C. USA.
Sharma V., Sharma, L. & Sandhu, K. S. (2020). Cucumber (Cucumis sativus L.). In: G. A. Nayik and A. Gull (eds.). Antioxidants in vegetables and nuts-properties and health benefits (pp.333-340). Springer, Singapore.
Shilpha, J., Manivannan, A., Soundararajan, P. & Ryong, J. B. (2023). Heat stress mitigation by silicon nutrition in plants: a comprehensive overview. In: R. P. De Mello (ed.). Benefits of silicon in the nutrition of plants (pp.328-346). Springer Cham.
Shuangsheng S., Zhengkun, Y., Zhiyu, S., Nannan, W., Ning, G., Jinghan, N., Airong, L., Bing, B., Golam, J. A. & Shuangchen, C. (2022). Silicon enhances plant resistance to Fusarium wilt by promoting antioxidant potential and photosynthetic capacity in cucumber (Cucumis sativus L.). Frontiers in Plant Science. 13, 1-16. https://doi.org/10.3389/fpls.2022.1011859.
Singh, P., Kumar, V. & Sharma, A. (2023). Interaction of silicon with cell wall components in plants: a review. Journal of Applied and Natural Science. 15(2), 480-497. https://doi.org/10.31018/jans.v15i2.4352.
Steiner, A. A. (1984) The universal nutrient solution. In: Proceedings of the 6th International Congress on Soilless Culture (pp.633-649). International Society for Soilless Culture. Wageningen, The Netherlands.
Yuvaraj, M., Sathya, P. R., Jagathjothi, N., Saranya, M., Suganthi, N., Sharmila, R., Cyriac, J., Anitha, R. & Subramanian, K. S. (2023). Silicon nanoparticles (SiNPs): Challenges and perspectives for sustainable agricultura. Physiological and Molecular Plant Pathology. 128, 1-11. https://doi.org/10.1016/j.pmpp.2023.102161.
Zhang, Y., Yu, S., Hai-Jun, G., Hai-Liang, Z., Huan-Li, L., Yan-Hong, H. & Yi-Chao, W. (2018). Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture. 17(10), 2151-2159. https://doi.org/10.1016/S2095-3119(18)62038-6.













